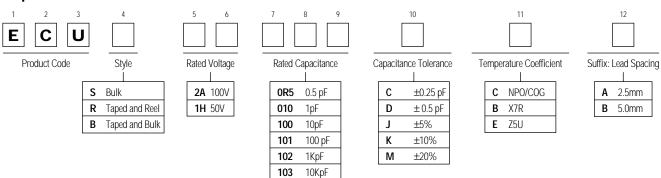

Ceramic Multilayer Radial Leaded Capacitor

Series: **ECU-S**Type: **COG**

■ Features

- Good thermal stability
- · High insulation resistance
- · Low dissipation factor
- · Low inductance


■ Applications

- · Resonant circuits
- · Filter circuits
- · Timing elements
- Coupling and filtering, particularly in RF circuits

■ Major Specifications

Operating temperature range	–55°C to 125°C	Q factor/dissipation factor	≤ 15%
Rated voltage	50 VDC, 100 VDC	Insulation resistance	100,000 M Ω or (1,000 M Ω x μ F0,
Capacitance range	50 VDC: 100-47,000 pF		whichever is less
	100 VDC: 4.7–220 pF	Endurance test (1,000 hrs.)	150% rated VDC at 125°C
Capacitance tolerance	±0.5 pF, ±5%, ±10%	Temperature coefficient	0±30ppm/°C
Dielectric strength	200% rated VDC for 10 s		

■ Explanation of Part Numbers

Panasonic

■ Terminals

- · Parallel wire leads, iron-nickel, thinned
- · Crimped leads
- · Non-standard lead lengths on request

■ Marking

 Rated capacitance, tolerance, manufacturer's logo, ceramic material, voltage

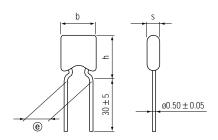
■ Packing

Optionally:

- Taped (reel or ammo pack)
- Bulk

■ Maximum ratings

• Climactic category in accordance with IEC 68-1: 55/125/56


Available capacitance tolerances

Rated capacitance	Tolerance	Symbol
CR < 10 pF	$\Delta C_R = \pm 0.5 \text{ pF}$	D^1
	$\Delta C_R = \pm 1.0 \text{ pF}$	F
CR ≥ 10 pF	$\Delta C_R/C_R = \pm 5\%$	J ¹
	$\Delta C_R/C_R = \pm 10\%$	K

Rated voltage values

 $V_R = 50 V^2$, 100V

■ **Dimensions in mm** (not to scale)

Lead spacing **(e)**= $2.5^{+0.6}_{-0.1}$ mm

h max. = 5.5 b max. = 5.0 s max. = 2.5

Lead spacing $e = 5.0^{+0.6}_{-0.1} \text{ mm}$

h max. = 5.5 b max. = 5.0 s max. = 2.5

¹ Standard tolerance

² Also suitable for 63V applications